Evolving The Deoxyribozyme-Based Logic Gate Design Process Through MAYA-II Reconstruction
نویسندگان
چکیده
We previously described a tic-tac-toe playing molecular automaton, MAYA-II, constructed from a molecular array of deoxyribozyme-based logic gates, that uses oligonucleotides as inputs and outputs. We are now developing an ensemble modeling tool for high-throughput oligonucleotide input and logic gate designs. The modeling tool is based on exhaustive reconstruction of both intended and unintended reactions between MAYA-II gates and inputs, and seeks to directly correlate empirical observations with computational predictions. Here we describe exhaustive analysis of the MAYA-II Yes logic gates folding structures, both alone and in conjunction with the MAYA-II oligonucleotide inputs. Results indicate that in silico modeling accurately reflects experimental results, creating a predictive value and benchmark for future high-throughput oligonucleotide input and Yes gate designs. These studies serve purpose towards our goal of constructing a generalized oligonucleotide design library for expansion of molecular computation beyond hundreds, to millions of potential interactions, conferring greater functionality in terms of both reliability and complexity.
منابع مشابه
Medium scale integration of molecular logic gates in an automaton.
The assembly of molecular automata that perform increasingly complex tasks, such as game playing, presents an unbiased test of molecular computation. We now report a second-generation deoxyribozyme-based automaton, MAYA-II, which plays a complete game of tic-tac-toe according to a perfect strategy. In silicon terminology, MAYA-II represents the first "medium-scale integrated molecular circuit",...
متن کاملA Novel Design of Penternary Inverter Gate Based on Carbon Nano Tube
This paper investigates a novel design of penternary logic gates usingcarbon nanotube field effect transistors (CNTFETs). CNTFET is a suitable candidate forreplacing MOSFET with some useful properties, such as the capability of having thedesired threshold voltage by regulating the diameter of the nanotubes. Multiple-valuedlogic (MVL) such as ternary, quaternary, and penternary is a promising al...
متن کاملDeoxyribozyme-based logic gates.
We report herein a set of deoxyribozyme-based logic gates capable of generating any Boolean function. We construct basic NOT and AND gates, followed by the more complex XOR gate. These gates were constructed through a modular design that combines molecular beacon stem-loops with hammerhead-type deoxyribozymes. Importantly, as the gates have oligonucleotides as both inputs and output, they open ...
متن کاملA Novel Design of Quaternary Inverter Gate Based on GNRFET
This paper presents a novel design of quaternary logic gates using graphene nanoribbon field effect transistors (GNRFETs). GNRFETs are the alternative devices for digital circuit design due to their superior carrier-transport properties and potential for large-scale processing. In addition, Multiple-valued logic (MVL) is a promising alternative to the conventional binary logic design. Sa...
متن کاملDeoxyribozyme-based half-adder.
We have constructed a solution-phase array of three deoxyribozyme-based logic gates that behaves as a half-adder. Two deoxyribozymes mimic i(1)ANDNOTi(2) and i(2)ANDNOTi(1) gates that cleave a fluorogenic substrate, reporting through an increase in fluorescence emission at 570 nm. The third deoxyribozyme mimics an i(1)ANDi(2) gate and cleaves the other fluorogenic substrate, reporting through a...
متن کامل